您的位置:www.85058.com > 互联网资讯 > 资源 | 机器学习必知的15大框架,欢迎补充!ww

资源 | 机器学习必知的15大框架,欢迎补充!ww

发布时间:2019-10-15 01:24编辑:互联网资讯浏览(196)

    来源:机器学习算法与Python学习

    4.Caffe是由伯克利视觉学习中心(BLVC)和社区贡献者们基于BSD-2-协议开发的一个深度学习框架,它秉承“表示、效率和模块化”的开发理念。模型和组合优化通过配置而不是硬编码实现,并且用户可根据需要在CPU处理和GPU处理之间进行切换,Caffe的高效性使其在实验研究和产业部署中的表现很完美,使用单个NVIDIA K40 GPU处理器每天即可处理超过六千万张图像 。

    原标题:资源 | 机器学习必知的15大框架,欢迎补充!

    嵌牛正文:

    本文约4000字**建议阅读8分钟。**

    2.Amazon Machine Learning(AML)是一种让各种级别使用机器学习技术的开发人员可轻松掌握的一个服务,提供了视觉工具和向导,可以指导您在不必学习复杂的机器学习算法和技术的情况下建立机器学习。

    10. Scikit-Learn为了数学和科学工作,基于现有的几个Python包(Numpy,SciPy和matplotlib)拓展了Python的使用范围。最终生成的库既可用于交互式工作台应用程序,也可嵌入到其他软件中进行复用。该工具包基于BSD协议,是完全免费开源的,可重复利用。Scikit-Learn中含有多种用于机器学习任务的工具,如聚类,分类,回归等。Scikit-Learn是由拥有众多开发者和机器学习专家的大型社区开发的,因此,Scikit-Learn中最前沿的技术往往会在很短时间内被开发出来。

    9.Pattern是Python编程语言的web挖掘组件,有数据挖掘工具( Google、Twitter 、Wikipedia API,网络爬虫,HTML DOM解析器),自然语言处理(词性标注,n-gram搜索,情感分析,WordNet接口),机器学习(向量空间模型,聚类,支持向量机),网络分析和可视化。

    8. Mlpack是一个基于C++的基础学习库 ,最早于2011年推出,据库的开发者声称,它秉承“可扩展性、高效性和易用性”的理念来设计的。执行Mlpack有两种方法:通过快速处理简易的“黑盒”操作命令行执行的缓存,或者借助C++ API处理较为复杂的工作。Mlpack可提供简单的能被整合到大型的机器学习解决方案中的命令行程序和C++的类。

    1.Apache Singa是一个用于在大型数据集上训练深度学习的通用分布式深度学习平台,它是基于分层抽象的简单开发模型设计的。它还支持各种当前流行的深度学习模型,有前馈模型(卷积神经网络,CNN),能量模型(受限玻尔兹曼机,RBM和循环神经网络,RNN),还为用户提供了许多内嵌层。

    机器学习工程师是开发产品和构建算法团队中的一部分,并确保其可靠、快速和成规模地工作。他们和数据科学家密切合作来了解理论知识和行业应用。数据专家和机器学习工程师的主要区别是:

    转自CDA数据分析

    15. Veles是一套用C++开发的面向深层学习应用程序的分布式平台,不过它利用Python在节点间自动操作与协作任务。在相关数据集中到该集群之前,可对数据进行分析与自动标准化调整,且REST API允许将各已训练模型立即添加至生产环境当中,它侧重于性能和灵活性。Veles几乎没有硬编码,可对所有广泛认可的网络拓扑结构进行训练,如全卷积神经网络,卷积神经网络,循环神经网络等。

    15.Veles是一套用C++开发的面向深层学习应用程序的分布式平台,不过它利用Python在节点间自动操作与协作任务。在相关数据集中到该集群之前,可对数据进行分析与自动标准化调整,且REST API允许将各已训练模型立即添加至生产环境当中,它侧重于性能和灵活性。Veles几乎没有硬编码,可对所有广泛认可的网络拓扑结构进行训练,如全卷积神经网络,卷积神经网络,循环神经网络等。

    原创系列文章:返回搜狐,查看更多

    6.Massive Online Analysis (MOA)是目前最受欢迎的数据流挖掘开源框架,拥有一个非常活跃的社区。它包含一系列的机器学习算法(分类,回归,聚类,离群检测,概念漂移检测和推荐系统)和评价工具。和WEKA项目一样,MOA 也是用Java编写,但扩展性更好。

    参考链接:

    style="font-size: 16px;">http://bigdata.evget.com/post/2183.html

    本文转自: style="font-size: 16px;">机器学习算法与Python学习 公众号;

    姓名:吴兆阳  学号:14020199009

    版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。

    11.Shogu是最早的机器学习库之一,它创建于1999年,用C++开发,但并不局限于C++环境。借助SWIG库,Shogun适用于各种语言环境,如Java,Python,c#,Ruby,R,Lua,Octave和Mablab。Shogun旨在面向广泛的特定类型和学习配置环境进行统一的大规模学习,如分类,回归或探索性数据分析。

    责任编辑:

    10.Scikit-Learn为了数学和科学工作,基于现有的几个Python包(Numpy,SciPy和matplotlib)拓展了Python的使用范围。最终生成的库既可用于交互式工作台应用程序,也可嵌入到其他软件中进行复用。该工具包基于BSD协议,是完全免费开源的,可重复利用。Scikit-Learn中含有多种用于机器学习任务的工具,如聚类,分类,回归等。Scikit-Learn是由拥有众多开发者和机器学习专家的大型社区开发的,因此,Scikit-Learn中最前沿的技术往往会在很短时间内被开发出来。

    11. Shogu是最早的机器学习库之一,它创建于1999年,用C++开发,但并不局限于C++环境。借助SWIG库,Shogun适用于各种语言环境,如Java,Python,c#,Ruby,R,Lua,Octave和Mablab。Shogun 旨在面向广泛的特定类型和学习配置环境进行统一的大规模学习,如分类,回归或探索性数据分析。

    嵌牛提问:机器学习有哪些主要框架?

    1. Apache Singa 是一个用于在大型数据集上训练深度学习的通用分布式深度学习平台,它是基于分层抽象的简单开发模型设计的。

    嵌牛导读:机器学习工程师是开发产品和构建算法团队中的一部分,并确保其可靠、快速和成规模地工作。他们和数据科学家密切合作来了解理论知识和行业应用。数据专家和机器学习工程师的主要区别是:机器学习工程师构建、开发和维护机器学习系统的产品。数据专家进行调查研究形成有关于机器学习项目的想法,然后分析来理解机器学习系统的度量影响。

    www.85058.com,下面是机器学习的框架介绍:

    13.Theano是一个基于BSD协议发布的可定义、可优化和可数值计算的Phython库。使用Theano也可以达到与用C实现大数据处理的速度相媲美,是支持高效机器学习的算法。

    本文由www.85058.com发布于互联网资讯,转载请注明出处:资源 | 机器学习必知的15大框架,欢迎补充!ww

    关键词: